
UNCLASSIFIED

AD274 318

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished., or in any way
supplied the said drawings, specifi'cations, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



-. Z

TIS~A

01,TE&ý
I0

1'2



AFOSR 2048 -1

TR AE 6201

I LINEARIZED DISSOCIATING GAS FLOW
PAST SLENDER BODIES

II. by

T. Y. Li and K. C. Wang

Contract No. AF 49(638) -977

i LMechanics Division
Air Force Office of Scientific Research

ARDC
Washington, D. C.

1 4

"Qualified requestors may obtain copies of this
report from the ASTIA Document Service Center,
Arlington 12, Va. Department of Defense contractors
must be established for ASTIA services, or have
their 'need-to-know' certified by the cognizant
military agency of their project or contract."

I Department of Aeronautical Engineering and Astronautics
Rensselaer Polytechnic Institute

Troy, New York

January, 1962



11;
TUBLE OF CONTENTS

~ 1•.

Page
•liSummary i

SI Introduction 1

II Solutions 4

1- (a) Supersonic 5

L(b) Subsonic 9

III Drag, Lateral Forces and Moments 14

(a) Pressure RelatLon 14

(b) Density Relation 15

(c) Drag, Supersonic and Subsonic 16

(d) Lateral Forces and Moments 21

. IV Physical Mechanism of Nonequilibrium Drag 23

V Application to Bodies of Revolution 27

VI Conclusions 31

References 33

Appendix -- Estimation of Integral by Mean 34
Value Theorem

Figures 36

I.

I-

!I

il



11

I [In this report an inviscid, compressible, linearized disso-

ciating gas flow over slender bodies of general cross section is
S

considered. Essentially it is an extension of the conventional

slender body theory include the dissociation effects. Both super-

I sonic and subsonic cases are examined. To our present approximation

the lateral forces and moments are found the same as those for the

conventional case, but there exist additional non-equilibrium terms

in the drag expression. If the body is pointed at both ends, the

non-equilibrium term is formally the same for both the supersonic

and the subsonic cases except that the sign in the respective cases

is just the opposite. Physical aspects of the nonequilibrium drag

problem are briefly considered. These considerations show that in

the subsonic case the nonequilibrium term represents a drag and in

I the supersonic case it is a thrust. Finally, the supersonic drag

of slender bodies of revolution at small angle of attack has been

calculated, including dissociation effects.

I
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Notation

a Velocity of sound

C Contour of the cross section in plane normal1.. to x-axis (see below)

c Drag coefficient

D Drag

F"I Inverse Fourier transform

I1 Modified Bessel function
Kn

L. k * ac/afi Ratio of the equilibrium speed of sound to the
frozen speed of sound

Length of the body

r LInverse Laplace transform

Mf Frozen Mach number

n Normal to the body contour in y-z plane

p Pressure

q Velocity

r Radial coordinate

R Body radius

t Thickness of the body

- Distance along C

s Laplace transform variable

S Cross section area

u,v,w Velocity component in x, r, direction

x,y,z Rectangular coordinates, x-axis being in the free
stream direction



J

U Free stream velocity

W Complex potential

defined in Eqs. (3), (9)

Angle of attack

2 •Defined in Eq. (3a)

Euler's constant

Complex variable

G Angular coordinate

9 Mass density

T Effective relaxation time, ref. (1)

Perturbed potential

Fourier transform of

* Stream function

CO •Fourier transform variable

Subscript

e Equilibrium state

f Frozen state

Undisturbed state

r Real part

Superscript

Bar Laplace transform

Prime Perturbed quantities

S ' iii

joI



I. INTRODUCTION

The linearized inviscid compressible dissociating flows

of a diatomic gas are irrotational and satisfy a generalized

wave equation of third order in terms of the velocity potential

IThis equation was first derived by Moore and has the same

form as the equations for the propagation of elastic waves in a

material subject to the relaxation of stresses, as obtained by

Morrison2 .

By means of this linearizedoequation, several authors1 ' 3 ' 4 ' 5

haveodiscussed some two-dimensional flow problems. Except for

the case of a flow past a wavy wall 3 , it was difficult 1' 4 ' 5 to

determine the flow field. Therefore, in most of the recent results,

only the conditions on the body surface were evaluated. For the

study of an entire flow field, Moore and GibsonI further simpli-

fied the generalized wave equation to a variant of the telegraph
0

equation for which solution may be obtained in a closed form.

The present report deals with linearized dissociating flow

past slender pointed bodies of general cross-section. Essentially

it is an extension of the earlier works of Ward and Adams and

Sears 67, to include the dissociation effects. Both the supersonic

and subsonic cases have been considered. The Laplace transform

method is used for the supersonic case, the Fourier transform

methods for the subsonic case. It will be- seen that the trans-

formed equations (transformed with respect to x) are identical in



j form as those obtained by Ward and Adams and Sears6 ' 7  Then

by the usual slender body approximations, the problem can be

solved without any additional simplifications.

Non-equilibrium processes lead to irreversible increase

in entropy along streamlines in the flow. However, this in-

crease of entropy is of second order of magnitude, 8 consequently,

to our linear approximation, the flow is still isentropic.

Kusukawa and Li 8 have shown that the nonequilibrium drag due to

the increase of entropy is of the third order in perturbation

quantities. Such a nonequilibrium entropy drag will not be con-

sidered in the present paper.

We remark also that though we shall always refer our dis-

cussion to dissociation in this report, actually all the results

apply equally to the case of vibrational relaxation because the

linearized equation for these two cases is of the same form.

Development of the present theory was completed in late

spring of 1961. Essentials of this work have been recorded pre-
11

viously in Wang's thesis which was carried out under Li's

direction. Independently, Clarke 1 2 studied the present problem

and obtained results similar to the present theory. However, in

Refs. (11) and (12) the authors held different opinions on the

matter of the subsonic nonequilibrium drag on a doubly pointed

slender body. Clarke concluded that in such a case the subsonic



I nonequilibrium drag is positive. Wang contended, on the other

j hand, that the subsonic nonequilibrium drag expression can take

either positive or negative sign depending on the body shape

I (see Appendix of the present paper, also see Ref. 11). To be

sure, the subsonic nonequilibrium drag problem was studied by

Kusukawa and Li 8 , using a thermodynamic approach. These recent

•I I. calculations would support Clarke's conclusion. Publication of

the present paper is undertaken at this time since it would com-

plement the research results of Refs. 8 and 12. It is hoped

V that a quantitative analysis of the nonequilibrium drag effects

will be made available shortly.

,10
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II. SOLUTIONS OF THE EQUATION

Consider a cylindrical coordinate system as shown in

Fig. I, the free stream Velocity U being aligned with the

x-axis, while the pointed nose being located at the origin.

The body is slender, subject to the same restrictions as in

6,7the conventional slender body theory Its cross section

may not be circular. The medium is taken to be a diatomic

gas such as pure oxygen or nitrogen which forms a binary mix-

ture when partially dissociated. In a linear theory the flow

is irrotational, a perturbation potential • may be defined:

where is the perturbation velocity. For steady flows,

satisfies the following equationI

where

1I" denotes the relaxation time, Mf the frozen Mach number,

C0e , and 0, are respectively the equilibrium speed of

sound and the frozen speed of sound. It can be shown that oHk

is greater than Oe so that, generally, k is less than unity.

ill '--''-'-'-'-'e
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For the ideal cases of equilibrium and frozen flows, there is

only one speed of sound, a. . and 04. respectively. Eq. (1)

consists of two parts (in two separate brackets), one for

frozen flow, the other for equilibrium flow. When the relaxa-

tion ' is long, the frozen part dominates; in the opposite case,

the equilibrium part will govern the motion. In the following,

we shall refer to flows as being "supersonic" or "subsonic" where

both and ! are greater or less than unity.

(a) Supersonic case

For the supersonic case, in front of the frozen Mach line

from the nose the disturbances and the perturbation potential

vanish. In the disturbed flow region, Eq. (1) can be written as
* F '• • _i • _ -

(1-a)

Eq. (1-a) can be solved by the Laplace transform method. With

the notation 5 - - , the operational form of Eq. (1-a) is

where

,=

L:

'I i,= .. ] . ,, , ...



0 6

and we have defined here

'2.j

- (3)

Since K 4 1, hence • > o may be positive or negative, but

always real. It is interesting to see that the transformed

equation (2) assumes a form identical to that for the conventional

case of non-dissociating flow. The difference appears only in .

J }For purely frozen or equilibrium flows Eq. (3) reduces to

or

The solution of Eq. (2) may be readily obtained, for ex-

ample, by the separation of variables method in terms of modified

Bessel functions k.,(j:•) and ((). To have an outgoing

wave propagating downstream from the body, we take

I<, I -X) C' [ (S) C&hsDSS V-nG

where the coefficients C. and D-, are to be determined presently.

i0
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Now we introduce the slender body approximation. For

slender bodies ,where is the length of the body.

Hence to describe the flow on and near the body, we retain

i only the leading term in the series expansion of k., i.e.,

n z 1, 2,...

" A- )

where o .5772... is the Euler's constant. Thus

S2

By inverse transform

OýC' x) J, (1) 4.7L 4(2 (5)-

where

~C, (-S)

2 - C1)1 (5a)

Introducing ej= - • and a complex potential W( , x), we

have

Y1 (6)



where

0

QC0LQ),(,(x) will be determined by the boundary conditions. In

particular, o.,C) can be determined in exactly the same way

as in Ref. (6), so that

*--(7a)

The term b 0 (x) can be evaluated in terms of a,(x). From
00

Eq. (3), we have

to 5

The inversion of these terms are found9 to be

J-'(s• = g ('C

where 6'(x) is the Dirac Delta function. Then by convolution,
0

we obtain from Eq. (5a)

o~(jx)~- { '6) t ,(c-A (7b)

* The term involving a(O) has been omitted because a., Cc 0

for pointed nosed bodies. The first two terms are same as those
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r

given by Ward6 except for the appearance of the frozen Mach

number in the present result. The last term gives the non-

equilibrium effects. Any calculation not involving b,(x) will

be free from the effects due to non-equilibrium dissociation,

because it is the only place the non-equilibrium effects enter.

(b) Subsonic case

For the subsonic case, all disturbances die out at a large

distance from the body, certainly they vanish at :X +N

Eq. (1) can be solved by the Fourier transform method. If

denotes the Fourier transform of 0 with respect to x, i.e.,

then the transformed form of Eq. (1) becomes

-- 1 = . __ _ - Z n (8)

where

Cot (I r" (9)

with • and P2 similarily defined as in Eq? (3). Eq. (8)

differs from that considered by Adams and Sears 7 only in

which now is a complex function of c. . This equation can be

solved, under the restriction c. >o , in exactly the same way

as in the supersonic case. Thus we obtain

C~ . ..... (.; ,-S V-\
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The modified Bessel functions with complex argument have

similar asymptotic forms to those with real argument. For

slender bodies we retain only the first term in the expansion

series of I , the solution becomes formally identical with

that for supersonic flow given in Eq. (4).

= ~ ~ ~(10)

Making inverse transform;

where

P (z) - r -'f z -'•-,1 . •C'~-_• ) (ila)

B .• = 2 ,-, . J

The inverse Fourier transform of a function is defined by

An(x) and rBn(x) are real because f is real. Again let e

•the real part of a complex potential

I 'r1~ z&~so that

-L 4Pr0 tz (12)
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where

0 oCI)O ck5 () must be determined as before by the boundary

conditions, while £-o&)may be evaluated in terms of % Cx)

To evaluate G-0 C) , we rewrite Eq. (9)

for 5 we put

2 114= •' '/i• +

so that

~~jf -t2 (13)

The inverse transform of- these terms can be shown 9 ' 1 0 to be

F-~'[ tc• I•j - s•r:z

T0

-' _(14)

F-'4 M - -S ecU e-

where E(.) is the Dirac Delta function and -r\C-)is defined

by

( a *.... ...... ,. . . . • •. ..... ...... ... .. ......... :. .. ..,. . ... .,,. ..-. . !7 '':••
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Ip X f-1i
0 x =0

then by convolution, we finally obtain

-- - " k (6----

2 -- 0, +I °l ' • -

Sii-c j - _ ___ (15)

To save writing, we have heare used the condition that ao(x),

ao'(x) vanish for (/ x and x < 0 as a direct result of

Eq. (7a). Except for the appearance of the frozen Mach number

o2

the first five terms are the same as those given by Adams and

Sears7 Again the last term of bo(x) gives the nonequilibrium

effect. We observe that the nonequilibrium term has the same

form for both the supersonic and subsonic flows.

From the classical hydrodynamical theory, we recognize

immediately that the first term in Eqs. (6) and (12) represents

! a two-dimensional source while the summation terms represent a

i two-dimensional doublet (n a 1) and higher order signularities

(n > 1). Therefore \4- 4o0C)represents an incompressible two-

Sdimensional potential flow past a cylinder of general cross

i~~i ' :... .. ................ .. ... .. ... ) % (......~
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Ii The nonequilibrium effect appears only in the last term

r fi of bo(x). Since Eqs. (6) and (12) differ from the corres-

ponding formulus in the conventional slender body theory onlyI in bo(x), it follows that the nonequilibrium dissociation

t j' affects only the x-component of velocity u', not v' or w' in

the radial or angular direction. An immediate consequence of

this is that the nonequilibrium dissociation does not change

I. the lateral forces and moments because they depend on the cross

flow as will be shown later.

Ii

I

Ii
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III. DRAG, LATERAL FORCES AND MOMENTS

I` In order to determine the aerodynamic forces on the body,

j some information about the order of magnitude of some pertinent

quantities is needed. Following Ward's proof, we remark first

that on the body the normal and tangential velocity components

in a cross plane (perpendicular to x-axis) are both 0-),

consequently on and near the body

then Eqs. (6) and (12) indicate that

and

-J •' (16)

In other words, the order of magnitude of these functions are

not changed due to the nonequilibrium dissociation.

(a) Pressure relation

In deriving Eq. (1), we used the linearized Euler's equa-

tion

I.

j. ... ..tl . ' , . .... .., ...:2 ........... ..... .. . i. .. .... ..... ..... ..
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which is just the linear approximation to the pressure. This

I fpressure relation is usually good for two dimensional flow.

For a slender body as we have just shown that and()

are of the same order of magnitude on and near the

body, a better approximation is therefore

. + (17)

which is the familiar quadratic approximation of the pressure

for the slender body13 . That the linearized equation (1), where

the terms like etc. are neglected, in combination with

the quadratic approximation of Eq. (17), where and

are kept, gives the correct first approximation for

the aerodynamic forces on the body is well known in the conven-

tional slender body theory. We here merely demonstrated that

the same pressure Eq. (17) should be used for the same reason,

namely the terms on the right side are all of the same order of

magnitude near the body.

(b) Density relation

In deriving Eq. (1), we also used the linearized continuity

equation

meanwhile Eqs. (5) and (11) indicate that in our present non-

equilibrium case, • also satisfies the Laplace's equation in

1 ""
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F ithe cross plane i.e.,

hence

1 .or

1 - - '6_ (18)

which is again the same form as used in the conventional case.

Having thus shown that the same pressure and density relations

as in the conventional case can be used for our present non-

equilibrium case, we are now in a position to calculate the

aerodynamic forces.

(c) Drag relation

Our solution J given by Eqs. (5), (11), pressure Eq. (17),

density Eq. (18) are of the identical forms as these for the

conventional case, it follows that the expressions for the drag,

lateral forces and moments deduced by Ward 6 from the general

momentum theory apply equally to our present nonequilibrium flow,

the drag is given by

S(19)
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where C denotes the contour of the cross section of the body

in a plane normal to the x-axis. --- denotes the

derivative of the perturbation potential taken with respect

to the outward normal to the body cross section contour (Fig. 2).

is the base pressure coefficient.

For supersonic flow, substitution

from Eqs. (7a), (7b) gives under the assumption of pointed nose

-2~~ TI' c

T'I
-- s"(')S') QoWŽ _.X •(i~s/~) -L

o- (20)

where the first four terms are same as those obtained by Ward.

The last two are purely due to the nonequilibrium dissociation.

The third term contains the contributions due to the angle of

attack and also the nonequilibrium dissociation because

Scontains o (< . This term will be evaluated later when a
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specific type of body like the body of revolution is to be

considered.

It is interesting to notice that for pointed nose slender

bodies, Eq. (20) does not depend on the Mach number, a fact

which is well known in the conventional case. A consequence

of this Mach number independence is that to the present approxi-

mation, a slender body experiences the same drag in an equili-

brium or frozen dissociating gas flow as in the conventional gas

flow, because the governing equations for these cases differ

only in Mach number.

There are two cases for which Eq. (20) may be simplified.

(a) when S( t ) = 0 i.e., the body is pointed at both ends,

and (b) when S'( ) 0 and the generators of the cylinder are

parallel to the free stream which makes • For

both of these cases, omitting the base pressure for case (b),

O a
-~-S 9 x 1 (21)

SSinc the quantity inside the bracket in the

second integral is always positive. However the sign of S"(x)

and S'(x) is, in general, dependent the body shape. The sign

~~ 1.
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of the second integral therefore cannot be asserted, in other

words, one cannot say whether it represents a drag or a thrust

in general.

Though one can integrate the second integral in Eq. (21)

by parts, and using the condition S'(O) z 0, to yield

2 .2

or, by the definition of exponential integral, one can rewrite

it as x

i 0o

VV
- 5(L• 4  §$cL •- 2b

it still does not appear to be possible that a definite con-

clusion on the sign may be drawn-from any one of these alterna-

tive expressions in general. The situation is different for

the first integral in Eq. (21) due to the different behavior of

log (x -~)and5[-ix] £ (.Ah? This first integral

certainly gives a drag and is larger in magnitude. Some further

discussion about the sign based on the mean value theorem is

given in the Appendix.

In the case of a slender cone, R(x) * (constant)x.

It follows then that
a 71-Y; > o

7Tt k'
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therefore 5' 1(4) 5 I(4) > o and the second integral

of Eq. (21) represents an increase in drag.

For subsonic flow, we consider the body to be pointed

at both ends so we may assume the absence of the upstream

influence of a wake. Eq. (19) thus becomes

on substituting a, (-X) ½ from Eqs. (7a), (15), we

have
1---'- =-- s•• '• -e• x

7A i - =/(- -- (22)-

the other terms either vanish by the assumption of pointed ends

or cancel out each other. Eq. (22) says that there exist a non-

equilibrium subsonic drag or thrust which in fact has the same

form as its counterpart in supersonic flow given in Eq. (21)

except that the sign is just reversed, because for subsonic flow,

•. (< -the quantity inside the bracket in Eq. (22) is always

negative. The possibility of a nonequilibrium thrust at subsonic

speeds as indicated here deserves further attention. In fact,

as pointed outi in Introduction, Clarke 1 2 has obtained a subsonic

nonequilibrium drag formula same as in Eq. (22) but he has con-

cluded that the slender body would experience a positive non-

equilibrium drag. To interpret the present result, we need to

LI
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I iobtain some physical insight of the nonequilibrium drag problem.

This is exactly what has been accomplished in Ref. 8. We shall

discuss the physical aspects of the nonequilibrium drag probelm

in Section IV.

(d) . Lateral forces and moments
The lateral forces F., Fy acting on the body can also be

determined from the momentum considerations. However it is

more convenient to write them in complex form

I F

so that the theory of complex function can be applied. Clearly

the real part F in our present coordinate system represents

the lift. The expression for F deduced by Ward depends only onV
the coefficient ct, (xt) and the base cross section, but not on

the term . Consequently the lateral forces and their

moments about the y and z-axis are the same for both supersonic

and subsonic conventional gas flow.

For our present nonequilibriumn flow, the nonequilibrium

effects as discussed above, also enter only through the term

b,(x). Since Ward's expression for the lateral forces and

moments apply equally to our case, therefore we conclude the

. nonequilibrium dissociation does not affect the lateral forces

and moments. To emphasize this point we may state that a
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slender body according to the present approximation experiences

the same lateral forces and moments regardless of the flow being

supersonic or subsonic, dissociating or non-dissociating, in

equilibrium or frozen or in nonequilibrium. This conclusion is

not surprising because the cross flow for all these cases is

regarded as incompressible flow in the present approximation.

V

1.

11
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II IV. PHYSICAL oECHANISM OF NONEQUILIBRIUM DRAG

Calculation in Section III show that a slender body would

experience an additional drag (positive or negative, depending on

the body shape) caused by chemical relaxation in a dissociating gas.

The recent study of Kusukawa and Li provides an explanation of the

physical mechanism of this nonequilibrium drag. They showed that

the body drag can be computed as follows:

2:a- (23

where

2=--and 2 + • denote two points ? and G on a streamtube,

upstream and downstream far from the body where all perturbations

almost vanish and ffo'c- denotes the integration with respect to

all streamtubes, the streamtube cross section being c[6 . From

Eq. (23) it is seen that the sign of the drag is determined by the

[ ]sign of the following integral along a streamtube:

V -f pv =- * i) (23a

VV
Z(23a)

If
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where

The subscript a denotes here free stream quantities and the

primed quantities are perturbations*. Therefore if we can determine

''and V/ along a streamtube we shall be able to compute the drag.

Using the Lagrange's approach, Kusukawa and Li obtained a linear

equation that provides the governing relation between the variation

of ,'and V'of a moving material element on a streamtube. In the

case of subsonic flow past a slender body, the function V' between

P and a can be generally represented by a Fourier series:

0 S 21 +" ,57 r-- (24)

where t is the time variable, , * denotes the time interval during

which the material element moves from P to & . The Fourier co-

efficients an and bn must be determined by the dynamic and kinematic

conditions appropriate to the problem and indeed they must be de-

I pendent on the body shape. In Ref. 8, it has been shown that the

perturbation pressure • that corresponds to a Fourier component

Vr~ c7~ V (25)

I*.

j * This should not be confused with the prime that denotes
S-differentiation such as in Eq. (7a).

i " •.... ' +" ' + . . . . .. " '•. - + + + , .. ..... ....•4 :+• %
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I ~can be obtained as

Fo .7) " (26)

where +_ V

A 1

From Eqs. (25) and (26), we conclude that V4'and Rr are out of

phase due to relaxation effects. In equilibrium and frozen flows,

however, V, /and are in phase and c• : . The consequence of

this phase shift due to relaxation effects is to cause a nonequili-

brium drag as can be verified from application of these results in

Eq. (23a). Indeed, in equilibrium and frozen flows, 4 = o D o ,

and in nonequilibrium flow, 4 • 0 , Kusukawa and Li obtained

; .0 (27)

where

K >0

Therefore, the phase shift t for the functions V, and • can be

regarded the physical cause of the appearance of a nonequilibrium

drag. This drag is positive by Eq. (27) because an and bn, which

are dependent on the body shape, have been assumed to be real quan-
S~/

tities. This shows that for a class of bodies, for which y can

1kU
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be represented as in Eq. (24) with real an and bn, we must expect

the subsonic nonequilibrium drag to be positive. This also shows

that the possibility of 3v\ / -s- exists only ifi+
0 + - which implies that an and bn must be complex quan-

tities for such bodies. This possibility has not been seriously

considered here since V in Eq. (24) is a real physical quantity

and generally an, bn are expected to be real quantities. We remark

therefore that the subsonic nonequilibrium drag on a doubly pointed

slender body is positive. In this sense the integral in Eq. (22)

should then take negative sign. Kusukawa and Li did not consider the

supersonic flow case in detail. They pointed out that in such a case

the drag would consist of supersonic wave drag and the nonequilibrium

drag. The nonequilibrium effects would tend to provide damping of

the disturbances propagating along Mach waves and would thus be ex-

pected to decrease the wave drag from the conventional value.

Iq
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ji V. APPLICATION TO BODIES OF REVOLUTION

Since the lateral forces and moments are same as the conven-

tional case, we shall consider here only the drag problem. Fur-

thermore for subsonic flow, the body must be pointed at both ends

so that our present theory may be applicable, and the drag has been

completely determined in Eq. (22). In*the following we therefore

consider the supersonic flow only, and the body may have a flat base.

Our method of solution is first to obtain a complex potential

W -Zo,.)using our knowledge in the classical incompressible two

dimensional flow. When a body of revolution is at a small angle of
attack - (Fig. III), we may consider the cross sections in a plane

normal to the x-axis to be circles through they actually are ellipses

with an error of 0 ( 2 ) . It is well known that for a circular

cylinder, the complex potential should be the superposition of a

source and a doublet, i.e.

-~-- - -(28)

where is the center of the cross section, given by 4o = -Z

-o denotes the angle of attack. The coefficients were so chosen

that the boundary conditions will be satisfied as shown below.

jL
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28|~2,

On the body ; - Zt 0 e substituting SC=r)-70.)

~ I ~in Eq. (28), we obtain

- InCTr

Si The real part in Eq. (29) is

goT °CX-J + R - + INA R)c (30)

From the boundary condition, we have

for a body of revolution at angle of attack -

therefore, we obtain

- -
(31)

This same relation can be obtained by differentiating Eq. (30).

Thus, the coefficient in Eq. (28) have been chosen correctly.

Furthermore, expanding Eq. (28), we obtain

%0

I I
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Ui which shows that

while O is the same as given by Eq. (7a).

Known 4 and , we can evaluate the contour integral

}t c S) - in the drag expression Eq. (20)

9,,=

(32

0

;ZII

Substituting @- afrom Eq. (7b) in the above expression gives

L 2 TIk~ 227 'tz
(f) (32)

We may write the drag coefficient as follows:

where C.D , CDLC are respectively the drag coefficient

at zero angle of attack, the induced drag coefficient and the non-

* equilibrium drag coefficient.
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Substitution of Eq. (32) into Eq. (20) then yields

3. -1 .5 1(--1) 5"(

!IIo 4>
T- k0 (34a)

(34b)

Z 27 (& (A)S c cA

51t)?s'6) e~ 4  -e(34c)

We have thus demonstrated that the drag contributions due to the

angle of attack and the nonequilibrium dissociation can be separated,

as might have been expected in the present linearized theory.
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VI Conclusions

In the present paper we have considered the inviscid com-

pressible linearized dissociating gas flow over slender bodies

of general cross section. Essentially it is an extension of the

earlier works of Ward and Sears and Adams to include the disso-

ciation effects. The transform methods have been used to obtain

the solutions, both supersonic and subsonic case have been examined.

The effects of Mach number and the rate of dissociation enter

only through the term o(•). The pressure and density relations

have been shown to take the same forms as in the conventiunal

theory (c.f. Eqs. (17), (18)), consequently, the expressions for

the lateral forces mements and drag deduced by Ward from general

momentum theory apply equally to the present case.

For the equilibrium and frozen cases, the lateral forces moments

and drag were found identical to those for the conventional case pro-

vided that the tail end of the body is either pointed or has a cylin-

drical form.

For the nonequilibrium case, the lateral forces and moments

were found to be the same as in the conventional case, but there exist

additional nonequilibrium terms in the drag expression. They may

represent drag or thrust. If the body is pointed at both ends, the

II
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[i nonequilibrium term is the sam for both supersonic and subsonic

flows except that the sign is just opposite. By considering the

physical mechanism of nonequilibrium drag, we obtain that in the

subsonic case, it represents a drag, in the supersonic case it is

a thrust.

Application to bodies of revolution in the case of supersonic

flow has been carried out in detail. The drag expression can be

separated into three parts, (1) the drag at zero angle of attack,

(2) the induced drag and (3) the nonequilibrium terms which may

represent drag or thrust.

C
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R Appendix

!ij' Estimation-of Integral by Mean Value Theorem

I Mean Value Theorem

Let (a) 4(x) and +. (x) be bounded and integrable in [a,b]

and (b) \ (') keep the same sign throughout La,bj, then

( Mk

where M and m are the upper and lower bounds of 1'L)in [a,bj ,

or we write

For proof of this theorem, see, for example, Courant's Differential

and Integral Calculus, Vol. I, p. 127, 2nd ed.

We now apply this theorem for the estimation of the integral

inEq. (22). We know for the subsonic flow

>o C h 4 •4 < L
hCe -

S~hence

( 5I% 'N£j

III
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0 5 S,

Now since

we may again apply the mean value theorem so that

I- Vo

The last integral is positive, but both _s(6)and SI(d&o)may be

positive and negative depending on the body's shape, consequently

Smay be positive or negative, i.e. drag or thrust.

U 11


